Winter chill, a vital climatic trigger for many tree crops, is likely to decrease by more than 50 percent during this century as global climate warms, making California no longer suitable for growing many fruit and nut crops, according to a team of researchers from the University of California, Davis, and the University of Washington.
In some parts of California鈥檚 agriculturally rich Central Valley, winter chill has already declined by nearly 30 percent, the researchers found.
鈥淒epending on the pace of winter chill decline, the consequences for California鈥檚 fruit and nut industries could be devastating,鈥 said Minghua Zhang, a professor of environmental and resource science at 澳门六合彩资料库 Davis.
Also collaborating on the study were Eike Luedeling, a postdoctoral fellow in 澳门六合彩资料库 Davis鈥 Department of Plant Sciences and 澳门六合彩资料库 Davis graduate Evan H. Girvetz, who is now a postdoctoral research associate at the University of Washington, Seattle. Their study appears July 22 in the online journal PLoS ONE.
The study is the first to map winter chill projections for all of California, which is home to nearly 3 million acres of fruit and nut trees that require chilling. The combined production value of these crops was $7.8 billion in 2007, according to the California Department of Food and Agriculture.
鈥淥ur findings suggest that California鈥檚 fruit and nut industry will need to develop new tree cultivars with reduced chilling requirements and new management strategies for breaking dormancy in years of insufficient winter chill,鈥 Luedeling said.
About winter chill
Most fruit and nut trees from nontropical locations avoid cold injury in the winter by losing their leaves in the fall and entering a dormant state that lasts through late fall and winter.
In order to break dormancy and resume growth, the trees must receive a certain amount of winter chill, traditionally expressed as the number of winter chilling hours between 32 and 45 degrees Fahrenheit. Each species or cultivar is assumed to have a specific chilling requirement, which needs to be fulfilled every winter.
Insufficient winter chill plays havoc with flowering time, which is particularly critical for trees such as walnuts and pistachios that depend on male and female flowering occurring at the same time to ensure pollination and a normal yield.
Planning for a warmer future
Fruit and nut growers commonly use established mathematical models to select tree varieties whose winter chill requirements match conditions of their local area. However, those mathematical models were calibrated based on past temperature conditions, and establishing chilling requirements may not remain valid in the future, the researchers say. Growers will need to include likely future changes in winter chill in their management decisions.
鈥淪ince orchards often remain in production for decades, it is important that growers now consider whether there will be sufficient winter chill in the future to support the same tree varieties throughout their producing lifetime,鈥 Zhang said.
To provide accurate projections of winter chill, the researchers used hourly and daily temperature records from 1950 and 2000, as well as 18 climate scenarios projected for later in the 21st century.
They introduced the concept of 鈥渟afe winter chill,鈥 the amount of chilling that can be safely expected in 90 percent of all years. They calculated the amount of safe winter chill for each scenario and also quantified the change in area of a safe winter chill for certain crop species.
New findings
The researchers found that in all projected scenarios, the winter chill in California declined substantially over time. Their analysis in the Central Valley, where most of the state鈥檚 fruit and nut production is located, found that between 1950 and 2000, winter chill had already declined by up to 30 percent in some regions.
Using data from climate models developed for the Intergovernmental Panel on Climate Change Fourth Assessment Report (2007), the researchers projected that winter chill will have declined from the 1950 baseline by as much as 60 percent by the middle of this century and by up to 80 percent by the end of the century.
Their findings indicate that by the year 2000, winter chill had already declined to the point that only 4 percent of the Central Valley was still suitable for growing apples, cherries and pears 鈥 all of which have high demand for winter chill.
The researchers project that by the end of the 21st century, the Central Valley might no longer be suitable for growing walnuts, pistachios, peaches, apricots, plums and cherries.
鈥淭he effects will be felt by growers of many crops, especially those who specialize in producing high-chill species and varieties,鈥 Luedeling said. 鈥淲e expect almost all tree crops to be affected by these changes, with almonds and pomegranates likely to be impacted the least because they have low winter chill requirements.鈥
Developing alternatives
The research team noted that growers may be able change some orchard management practices involving planting density, pruning and irrigation to alleviate the decline in winter chill. Another option would be transitioning to different tree species or varieties that do not demand as much winter chill.
There are also agricultural chemicals that can be used to partially make up for the lack of sufficient chilling in many crops, such as cherries. A better understanding of the physiological and genetic basis of plant dormancy, which is still relatively poorly understood, might point to additional strategies to manage tree dormancy, which will help growers cope with the agro-climatic challenges that lie ahead, the researchers suggested.
Funding for this study was provided by the California Department of Food and Agriculture and The Nature Conservancy.
About 澳门六合彩资料库 Davis
For 100 years, 澳门六合彩资料库 Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, 澳门六合彩资料库 Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges 鈥 Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science 鈥 and advanced degrees from six professional schools 鈥 Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Media Resources
Pat Bailey, Research news (emphasis: agricultural and nutritional sciences, and veterinary medicine), 530-219-9640, pjbailey@ucdavis.edu
Minghua Zhang, Land, Air and Water Resources, (530) 752-4953, mhzhang@ucdavis.edu
Eike Luedeling, Plant Sciences, (530) 574-3794, eluedeling@ucdavis.edu