A $40,000 澳门六合彩资料库 Davis Early Career Faculty Award for Creativity and Innovation will give Assistant Professor Nitzan Shabek, Department of Plant Biology, the opportunity to expand his cutting-edge research on the chemical world of plant biomolecules by integrating virtual reality technology. The research could lead to the development of innovative treatments for disease in both medicine and agriculture.
鈥淚鈥檓 so excited and honored to receive this prestigious 澳门六合彩资料库 Davis award,鈥 said Shabek. 鈥淚 am grateful to all my mentors past and present and for the great support from the Dean of the College of Biological Sciences Mark Winey and the Department of Plant Biology.鈥
All forms of life have evolved to sense physical and chemical signals like light, temperature, nutrients, oxygen and small molecules. Once perceived, cells quickly transform these signals into biochemical responses through the regulation of biomolecule levels.
In the plant world, such biochemistry is survival. From defending against predators and attracting pollinators to ensuring smooth cell functionality, small chemical molecules allow plants to function and interact with the world around them. Some of these molecules have disease-fighting properties but their minuscule size confounds research efforts.
鈥淲e want to know how these small molecules can directly affect those critical cellular pathways and can we redirect these metabolites to destroy cancer, neurodegenerative disorders, viruses and other pathogens,鈥 said Shabek. 鈥淗ow can we learn from cellular machines and utilize them to innovate and improve medical and agricultural technologies?鈥
A cellular machine critical for survival
Shabek鈥檚 research focuses on the ubiquitin proteasome system, a cellular machine responsible for the cell cycle, DNA repair, quality control of proteins and signal transduction pathways. Dysfunction of this significant cellular machine can lead to the development of immune diseases, neurodegenerative disorders and cancer, among other conditions.
鈥淚n the plant kingdom, this cellular machine is critical for plants to survive and function,鈥 said Shabek. 鈥淢y lab is interested in understanding these molecular pathways and how they are controlled by the ubiquitin system. Plants are incredibly sophisticated and not only we can learn so much from their biology, we have to research how they adapted to the ever-changing environment. Plants are so critical to our survival on this planet, and our next global crisis is already around the corner. We have to assure food security especially in the face of climate change and crop disease.鈥
Shabek鈥檚 nanoscale virtual reality techniques will allow him and his colleagues to investigate this system and its associated biomolecules in three-dimensional space, illuminating a once hidden world.
鈥淲e are working on optimizing this technology to provide a unique drug discovery platform and decipher the molecular basis of signaling pathways,鈥 said Shabek. 鈥淲ith Oculus, we can now dive into the molecular interfaces, physically be there, and use our hands to move a molecule鈥檚 coordinates and even design and guide new drugs in a virtual space.鈥
Shabek also hopes to integrate the technology into the classroom.
鈥淭his is a new technological era in which the boundaries between material and immaterial have begun to dissolve,鈥 said Shabek. 鈥淥ur post-millennial students are very much ready for more innovative concepts in education that can improve learning. Such experiences will have an immediate impact on students and enable them to instantly visualize and comprehend complicated molecular machineries.鈥
Media Resources
Nitzan Shabek, Plant Biology, 530-752-8187, nshabek@ucdavis.edu
Andy Fell, News and Media Relations, 530-752-4533, ahfell@ucdavis.edu